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Abstract:  Light detection and ranging (LiDAR) system is an active remote sensing technique which operates within the 

optical spectral wavelength range. The ability of LiDAR to provide range-resolved information with high temporal 

and spatial resolution makes it suitable to be widely used in atmospheric sensing devices to measure temperature, 

humidity, wind speed, aerosols and/clouds, and others. This paper contains the comparison between two types of 

elastic LiDAR (conventional LiDAR and imaging LiDAR); their techniques, methodologies and state of the art 

instrumentation utilized to acquire atmospheric aerosol information in a transition to make it simple and cost 

effective for ease of accessibility in scientific and research community. However, it takes different degrees of 

instrumental sophistication to retrieve structural (aerosol layer profiling), optical (backscatter and extinction 

coefficients) and microphysical (size, shape and type) properties. Ground-based coordinated LiDAR networks and 

space borne orbiting LiDARs together will provide a better understanding of the role of aerosols and/clouds in the 

global radiative balance and contribute to air-quality forecasts and meteorological analyses. The up-to-dateprogress 

as well as the future prospect of LiDAR has been outlined in this paper. 
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Introduction 

As an active remote sensing technique, light detection and 

ranging (LiDAR) system operates within optical spectral 

wavelength range. The LiDAR ability to provide range- 

resolved information with high temporal and spatial resolution 

makes it widely used in various atmospheric sensing such as 

temperature (Arshinov et al., 1983; Chen et al., 2004), 

humidity (Vaughan et al., 1988; Soriano et al., 1995), wind 

speed (Sroga et al., 1980; Liu et al., 2016), aerosols and 

clouds (Collis and Russell, 1976; Wandinger et al., 2011; Liu 

et al., 2013), among others. Over the past five decades 

conventional elastic (the same wavelength for both emission 

and detection) nanosecond-pulsed LiDAR technique based on 

time-of-flight approach, has proven to be an effective tool for 

profiling aerosol vertical structure especially in the planetary 

boundary layer (PBL). Aerosol optical properties (backscatter 

and extinction coefficients) are commonly retrieved using this 

LiDAR system. Apart from the conventional LiDAR system, 

atmospheric aerosol properties are also monitored by the 

recently developed imaging LiDAR technique. It uses photon 

angle of incidence to retrieve range- resolved information 

rather than the photon time of flight. The conventional LiDAR 

system and the imaging LiDAR system can either be of 

monostatic configuration or bistatic configuration, but 

generally monostatic one prevails in both. The two different 

aerosol LiDAR systems (conventional and imaging LiDAR 

systems) with the atmospheric aerosol properties retrieved 

were summarised in Tables 1 and 2.  

Progress in LiDAR system depends on technological 

breakthroughs on mainly the laser transmitter and the receiver 

sub-systems, which are the core components of LiDAR 

instrument. In addition, as can be seen in Table 1, simple 

LiDAR systems which are capable of determining the aerosol 

structural and optical properties are traced back to 60s and 70s 

of the twentieth century whereas based on Table 2, the 

imaging LiDAR emerged recently. Conventional as well as 

imaging LiDAR systems developments for microphysical 

properties retrieval are limited to the recent two decades. 

 

 

Table 1: Aerosol properties retrieved from conventional aerosol LiDAR measurements 

Properties Parameters References 

Structural PBL height 
Lofted layer base, top and thickness 

Cloud base, top and thickness 

Collis et al. (1964), Allen and Evans (1972) Stull (1988) 
Pal et al. (1992), Xu et al. (2019) 

Optical Backscatter coefficient 
Extinction coefficient 

Fernald et al. (1972), Fernald (1984), Potter (1987), Sicard et al. (2002) 

Microphysical Shape 
Size 

Gimmestad (2008), Xie et al. (2015) 
Chaikovsky et al. (2016), Lopatin et al. (2013), Dubovik et al. (2014) 

Kaufman et al. (2005), Shimizu et al. (2004), Tesche et al. (2009),  

Ansmann et al. (2012) 

 

Table 2: Aerosol properties retrieved from imaging aerosol LiDAR measurements 
Properties Parameters References 

Structural PBL height 

Cloud base, top and thickness 

Mei et al. (2019a), Mei et al. (2019b) 

Mei and Brydegaard (2015a) 

Optical Backscatter coefficient 

Extinction coefficient 

Kong et al. (2018), Mei et al. (2018),  

Sun et al. (2018), Mei et al. (2017) 

Microphysical Shape Size Mei and Guan (2017), Zhao et al. (2018), Mei et a. (2018) 
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LiDAR systems were deployed both on the ground and in the 

space to provide better local and global aerosol vertical 

distribution properties. Space LiDARs include LITE (LiDAR 

In-Space Technology, space shuttle-based LiDAR); CALIOP 

(Cloud-Aerosol LiDAR with Orthogonal Polarisation) 

onboard the CALIPSO (Cloud-Aerosol LiDAR and Infrared 

Pathfinder Satellite Observations) satellite; CATS (Cloud–

Aerosol Transport System) onboard ISS (International Space 

Station) and ALADIN (Atmospheric Laser Doppler LiDAR 

Instrument) onboard ADM-Aeolus (Atmospheric Dynamics 

Mission-Aeolus) (Ansmann et al., 2013). EarthCARE (Earth 

Cloud and Aerosol Explorer) from ESA (European Space 

Agency) and JAXA (Japan Aerospace Exploration Agency) is 

planned to be launched in June, 2022. 

Continuous progress in laser and detector technologies has 

been recorded for the last five decades. However still LiDAR 

system improvement can solve some important problems of 

atmospheric sciences, such as inaccurate profiling of 

atmospheric aerosols because of large uncertainties in the 

retrieval of their properties. It is stressed in Intergovernmental 

Panel on Climate Change (IPCC) reports from 2001 onward 

(IPCC, 2001), that aerosol properties impact on the Earth 

radiation budget and on the climate is poorly studied. The 

large spatio-temporal variations and the concentration of 

atmospheric aerosol properties must be considered to assess 

its effects on climate and air-quality. Furthermore, the cost, 

maintenance and instrumental complexity of LiDAR system 

especially conventional hindered its wider spread in the 

scientific research community (Barnes et al., 2007; Liu et al., 

2019). The conventional LiDAR system, however, faces some 

challenges which includes afterpulse effects, high cost, 

incomplete receiver’s field-of -view overlap and high dynamic 

range requirements (Harms, 1979; Campbell et al., 2002). 

Comparatively, imaging LiDAR system has an advantage of 

utilizing area imaging sensors thus require no overlap factor 

calibration and needs low dynamic range.  

The aim of this review is to provide the up-to-date state of the 

art in elastic LiDAR system (conventional LiDAR and 

imaging LiDAR) utilized for atmospheric aerosols remote 

sensing.  

LiDAR Techniques 

Conventional elastic LiDAR technique 

Conventional elastic LiDAR simply means a LiDAR system 

emitting a wavelength and detecting radiation elastically 

backscattered by the atmospheric constituents at that 

wavelength (Takeuchi, 2005). Thus, the energy of the incident 

photons is conserved. Equation (1) gives the single-scattering 

equation for return elastic-backscatter LiDAR signal at laser 

wavelength 𝜆𝑜 (m). 

𝑃𝜆𝑜
(𝑅) =

𝐾𝜆𝑜

𝑅2 𝑂𝜆𝑜
(𝑅)𝛽𝜆𝑜

(𝑅)𝑇𝜆𝑜

2 (𝑅)                         1 

𝑃𝜆𝑜
(𝑅) is the received power (W) backscattered from range R 

(m), and 𝐾𝜆𝑜
 is the system constant (𝐾𝜆𝑜

=

𝐸(𝜆𝑜)𝐴𝑟𝜉(𝜆𝑜)𝑐 2⁄ ) where 𝐸(𝜆𝑜) is the pulse energy (J) at 

wavelength 𝜆𝑜, 𝐴𝑟 is the effective telescope receiving area 

(m2), 𝜉(𝜆𝑜) is the optics net transmission of the system and 𝑐 

is the light velocity (ms−1). The term 𝑂𝜆𝑜
(𝑅) is the overlap 

function accounting for fractional laser beam cross-section 

contained by the receiver telescope field of view as a function 

of range R. It is determined by many different optical and 

geometrical parameters of the system as well as laser beam 

intensity distribution (Stelmaszczyk et al., 2005; Hey et al., 

2011). 𝛽𝜆𝑜
(𝑅) (m−1sr−1) is the total atmospheric backscatter 

coefficient, ( 𝛽𝜆𝑜
= 𝛽𝜆𝑜

𝑎𝑒𝑟 + 𝛽𝜆𝑜

𝑚𝑜𝑙) with aerosols (aer) and 

molecules (mol) contribution. 𝑇𝜆𝑜

2 (𝑅) is the round-trip 

atmospheric transmittance due to both aerosols and molecules 

define as (Kovalev and Eichinger, 2005): 

𝑇𝜆𝑜
(𝑅) =

𝐼𝜆𝑜
(𝑅)

𝐼𝜆𝑜
(0)

= exp (− ∫ 𝛼𝜆𝑜
(𝑥)𝑑𝑥

𝑅

0
)               2 

Where  𝐼𝜆𝑜(𝑅) is the intensity at range Rand 𝛼𝜆𝑜
 is the total 

atmospheric optical extinction coefficient (m−1). Light 

extinction occurs due to scattering and absorption by 

molecules and aerosols. Thus, the total extinction coefficient 

can be written as: 

𝛼𝜆𝑜
= 𝛼𝜆𝑜

𝑎𝑒𝑟 + 𝛼𝜆𝑜

𝑚𝑜𝑙        3 

 

The independent determination of backscatter and extinction 

coefficients is the solution to the basic LiDAR equation. But 

in an elastic LiDAR system with one measured quantity, 

𝑃𝜆𝑜
(𝑅) and two unknown variables (𝛼𝜆𝑜

 and 𝛽𝜆𝑜
) it is an 

underspecified problem (Bösenberg and Hoff, 2007).  

The elastic LiDAR equation solution dates back to 1950s 

when radar received signal was inverted for the rate of rainfall 

(Hitschfeld and Bordan, 1954) and Fernald et al. (1972) 

reconsidered LiDAR equation inversion. Based on one-

component atmosphere assumption, an unstable forward and 

stable far-end solution of LiDAR equation were presented by 

Davis (1969) and Klett (1981) respectively. In the LiDAR 

inversion algorithm introduced by Fernald (Fernald, 1984) 

and later reformulated by Klett (1985), the atmospheric 

aerosols and molecules contributions to the extinction were 

separated explicitly. Due to the under-determination problem 

of LiDAR equation, both one- component and two-component 

(Klett-Fernald, KF) algorithm require a calibration (boundary) 

value of the extinction or backscatter coefficient at the far-end 

of the range profile and extinction-to-backscatter ratio (so-

called LiDAR ratio) as inputs. The KF algorithm is preferred 

because it permits the use of the aerosol-only LiDAR ratio, a 

parameter characterising the microphysical aerosol properties 

(Böckmann et al., 2008). The KF backward inversion 

algorithm for the retrieval of aerosol backscatter coefficient at 

𝜆𝑜 is written as (Rocadenbosch et al., 2012): 
𝛽𝑎𝑒𝑟(𝑅) =

[𝑅2𝑃(𝑅)] exp{2 ∫ [𝑆𝑎𝑒𝑟(𝑢)−𝑆𝑚𝑜𝑙]𝛽𝑚𝑜𝑙(𝑢)𝑑𝑢
𝑅𝑚

𝑅 }

[𝑅𝑚
2 𝑃(𝑅𝑚)]

𝛽𝑎𝑒𝑟(𝑅𝑚)+𝛽𝑚𝑜𝑙(𝑅𝑚)
+2 ∫ 𝑆𝑎𝑒𝑟(𝑢)[𝑢2𝑃(𝑢)]

𝑅𝑚
𝑅 exp{2 ∫ [𝑆𝑎𝑒𝑟(𝑣)−𝑆𝑚𝑜𝑙]𝛽𝑚𝑜𝑙(𝑣)𝑑𝑣

𝑅𝑚
𝑢

}𝑑𝑢
−

𝛽𝑚𝑜𝑙(𝑅)  4 

Where 𝑃(𝑅) is the return LiDAR power, 

𝑆𝑎𝑒𝑟(𝑅)and𝑆𝑚𝑜𝑙(𝑅) =
8𝜋

3
are the aerosol and the molecular 

LiDAR ratios, respectively. 𝑅𝑚( 𝑅 ≤ 𝑅𝑚) is the calibration 

range at far-end chosen such that 𝛽(𝑅𝑚) = 𝛽𝑎𝑒𝑟(𝑅𝑚) +
𝛽𝑚𝑜𝑙(𝑅𝑚) ≈ 𝛽𝑚𝑜𝑙(𝑅𝑚). In practice, the atmospheric 

molecular backscatter coefficient is determined from 

temperature/pressure profile obtained by radiosonde or 

standard atmosphere model (Bodhaine et al., 1999; Behrendt 

et al., 2011). A constant (range- independent) aerosol LiDAR 

ratio is usually assumed based on aerosol information of the 

study area but is debatable for aerosol layers that varies 

significantly with height (Wandinger et al., 2002; Mattis et 

al., 2004). The noise and error assessment in elastic LiDAR 

retrieval are presented in (Comerón et al., 2004; 

Rocadenbosch et al., 2012). 

A trustworthy extinction profiles are hard to achieve from 

elastic LiDAR backscatter coefficient retrieval. This is 

because the extinction profile calculation must be done by 

multiplying the backscatter profile retrieved with the range-

independent LiDAR ratio that was used before as input in the 

backscatter retrieval (Bösenberg and Hoff, 2007). Numerous 

alternative methods have been presented which includes 

constraining extinction profiles with optical thickness 

measured using Sun photometer along the sounding path 

(Pedrós et al., 2010), nephelometer measurement of near-end 

boundary value (Hoff et al., 1996; Kovalev, 2003), among 

others.  

Figure 1(a)-(d) shows the retrieved vertical profiles of the 

range corrected signal, backscatter ratio, extinction coefficient 

http://www.ftstjournal.com/
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and total depolarization ratio of aerosol and cloud observed 

with the scanning polarisation Mie LiDAR (SPML) system on 

23 March 2012 at Hefei, China using constant LiDAR ratio of 

50 sr at 532 nm wavelength (Xie et al., 2015). The height of 

planetary boundary layer (PBL) is approximately 2.5 km and 

cloud occur at about 6.5 km with the LiDAR observation 

range of up to 14 km. The time plot of the range-corrected 

LiDAR signal at 1064 nm near Manaus, Brazil is depicted in 

Fig. 2. Cirrus clouds were detected in the upper tropical 

troposphere between the 8- and 16-km heights. A lofted 

aerosol layer at around 2.5 and 1.5 km deep residual layer can 

be seen in the lower troposphere. 
 

 

 

 
Fig. 1: Vertical profiles of the (a) range corrected signal, (b) backscatter ratio, (c) extinction and (d) total depolarization 

ratio of aerosol and cloud (Xie et al., 2015) 
 

 

Ceilometers are simply LiDARs. The commercial ceilometers 

used low-priced pulsed laser diode as transmitter with 

emission wavelength normally in the range 900 – 1100 nm 

(near infrared). Though it has high pulsed repetition frequency 

(few kilohertz) but with low pulse energy thereby allowing 

eye-safe operation. The receiver typically consists of an 

optical assembly (100 – 200 mm diameter) to collect the 

backscattered light, an avalanche photodiode (as 

photodetector), and a digitizer board.  

The primary use of ceilometers is to determine the height of 

cloud base, but simple size, low operational and maintenance 

cost, and commercial availability geared their rapid 

development with establishment of large number of national 

weather services of its networks. They are providing data at 

near-real continuous time (Wiegner et al., 2014; Madonna et 

al., 2015). This deployment fostered scientific community to 

explore its aerosol properties retrieval capability which is 

currently technologically hindered. Achieving that will 

complement the existing advance aerosol LiDAR networks 

station which are spatially less dense and lacked continuous 

observation. 

Despite the poor signal-to-noise ratio of ceilometers, an 

observation range of 7.5 km with 5 min and 15 m temporal 

and spatial resolutions respectively is typically achievable. 

But correct quantitative aerosol optical properties retrieval 

required backscatter calibration for molecular return at a 

reference height (aerosol-free region) which is challenging in 

ceilometers (Wiegner et al., 2014). Thus, only aerosol vertical 

structural property can be derived from ceilometer 

measurement. 

Imaging LiDAR technique 

The imaging LiDAR technique has been proposed and 

demonstrated in both bistatic (Meki et al., 1996; Barnes et al., 

2003) and monostatic (Mei and Brydegaard, 2015b) 

configuration for atmospheric aerosol profiling. The bistatic 

imaging LiDAR utilized wide angle lens with small aperture 

as the receiver and good for near range monitoring (Barnes et 

al., 2007). The drawback of this technique is low light 

collection efficiency which limit it operation only to night-

time. Besides that, aerosol phase function needs to be 

considered as the angle of the side scatter light may differ 

significantly with the change in the measurement altitude (Tao 

et al., 2014) and narrowband interference filters performed 

poorly in suppressing background noise due to large field of 

view.  

In the recent years, a monostatic imaging LiDAR technique 

for atmospheric profiling based on Scheimflug principle is 

developed and is called Scheimflug LiDAR (SLiDAR) (Mei 

and Brydegaard, 2015b; Kong et al., 2018). In contrast, 

SLiDAR can achieved much larger collecting efficiency of 

backscattering light with large aperture telescope, phase 

function variation is negligible and small field of view enable 

narrowband interference filter usage. The range domain 

analysis of the SLiDAR is presented (Agishev, 2020) as well 

as the signal measured is validated successfully by 

comparison studies performed with conventional elastic 

LiDAR (Mei et al., 2019b). However, the signal-to- noise 

ratio (SNR) of the SLiDAR detected signal is not optimized 

due to the low quantum efficiency of the tilted image sensor 

resulting in the large angle of the incident light (Catrysse and 

Wandell, 2002; Dittrich et al., 2019).  Moreover, another 

monostatic imaging LiDAR is proposed (Kong et al., 2020) 

employing parallel placed image sensor and achieved 

appreciable signal-to-noise ratio as compared with SLiDAR. 

This LiDAR technique is referred to as shallow depth-of-field 

imaging LiDAR (SDOFI-LiDAR) and unlike SLiDAR, the 

backscattering image of this SDOFI-LiDAR is defocused in 

the near/far range which lead to overestimation of the LiDAR 

signal at this range. The range-resolved backscattering signal 

is acquired based on the angle of backscattering light captured 

by the image sensor rather than the time-of-arrival. For 

SLiDAR, relationship between pixel position (𝑝I) and 

measurement distance (𝑧) is deduced from geometrical optics 

as (Mei and Brydegaard, 2015b, 2015a):   

𝑧 =
𝐿(𝑝I(sin Θ−cos Θ tan Φ)+𝐿IL)

𝑝I(cos Θ+sin Θ tan Φ)+𝐿IL tan Φ
                          5 

Where Φ is the swing angle of lens and 𝐿IL is the distance 

between image and lens plane given by Eq. (6) and (7) 

respectively. 𝐿 is the distance between the lens and image 

planes. 

http://www.ftstjournal.com/
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Φ=arc tan
𝐿

𝑧ref

− arc tan
𝑝I,ref cos Θ(𝑧ref−𝑓)

𝑧ref 𝑓
             6 

𝐿IL =
𝑧ref 𝑓

𝑧ref−𝑓
− 𝑝I,ref sin Θ7  

 

Here 
arc tan𝐿

𝑧
 is the backscattering angle of light (𝛾). The values 

of Φ and 𝐿IL can be calibrated by measuring the pixel position 

(𝑝I,ref ) of the backscattering signal from a remote fixed target 

with known distance (𝑧ref). From Eq. (5) the range resolution 

(dz) of SLiDAR is deduced as: 

D𝑧 = −
𝑧2𝐿ILcos Θ(1+tan2 Φ)

𝐿(𝐿IL+𝑝I(sin Θ – cos Θ tan Φ))
2 d𝑝I             8 

Where d𝑝I is the pixel interval which is a constant. The range 

resolution (dz) of SDOFI-LiDAR is the same as that of 

SLiDAR Eq. (8) (at Θ=0). 

 

The LiDAR equation for monostatic imaging LiDAR is 

similar to that of conventional monostatic LiDAR system, Eq. 

(1), except that the 
1

𝑅2
 term is eliminated due to the 

trigonometric relationship of the system and often the overlap 

function is considered to be 1 because two-dimensional image 

sensor can fully capture the transmitted laser beam (Mei and 

Brydegaard, 2015b): 

𝑃𝜆𝑜
(𝑅) = 𝐾𝜆𝑜

𝛽𝜆𝑜
(𝑅) exp (−2 ∫ 𝛼𝜆𝑜

(𝑥)𝑑𝑥
𝑅

0
) 10 

 

Thus, inversion algorithms of conventional elastic LiDAR can 

also be used in imaging LiDAR to retrieve extinction 

coefficient or backscattering coefficient as discuss earlier. The 

noise sources were modelled and assessed (Mei et al., 2018) 

for imaging LiDAR technique. Fig. 3 depicts the aerosol 

extinction coefficients profiles retrieved by the Fernald 

method in different measurement times (August 2017) in 

Dalian, China using imaging LiDAR (SLiDAR) (Mei et al., 

2018). As can be seen, the maximum retrieval distance varies 

based on the different atmospheric conditions (hazy, 

moderately polluted or clean) from about 2 to 7 km. 

 

 
Fig. 2: Temporal plot of the range-corrected signal at 

1064-nm wavelength between 2235 and 2335 UTC on 15 

Aug 2008 at near Manaus, Brazil (Althausen et al., 2009) 

 

 

 
Fig. 3: Retrieved aerosol extinction coefficients by the 

Fernald method in different measurement times (August 

2017) at Dalian, China (Mei et al., 2018)  

 

 
Fig. 4: The schematic of conventional LiDAR system 

 

 

 
Fig. 5: The schematic of imaging LiDAR system 

 

 

Instrumentation 

Basically, conventional elastic LiDAR systems are made up of 

transmitter and receiver sub-systems co-located, with fast 

photodetectors and acquisition electronics as shown in Fig. 3. 

The transmitter is usually a powerful pulsed laser (e.g. 

Nd:YAG laser) for aerosol remote sensing and a telescope at 

the receiver serves as the collector of photons backscattered. 

In order to minimise background noise, the collected optical 

signal is filtered, converted to an electrical signal by means of 

a fast photodetector (e.g., photomultiplier tubes/avalanche 

photodiodes, PMT/APD), amplified, digitised, and stored for 

further processing. The construction of a conventional elastic 

pulsed LiDAR system is still highly expensive and complex, 

despite the rapid development of pulsed laser sources and 

photon-detection electronics; hence limit it is usage to the 

atmospheric research community (Barnes et al., 2003; Mei 

and Brydegaard, 2016). In the other hand, a monostatic 

imaging LiDAR system has the same functional scheme as the 

conventional elastic LiDAR (Fig. 4) but employing a high-

power continuous-wave (CW) laser diode as light source with 

integrated Complementary Metal Oxide Semiconductor 

(CMOS)/Charge-Coupled Device (CCD) sensor as the 

detector. This LiDAR system (Fig. 5) is relatively simple and 

cost-effective. 

LiDAR system performance is determined primarily by 

wavelength of operation, laser pulse energy or power, receiver 

collecting area, optical throughput, out-of-band rejection ratio, 

as well as detector efficiency, linearity and dynamic range. 

Transmitter 

Conventional elastic LiDAR 

The laser source is one of the core components of a LiDAR 

system and serves as the LiDAR transmitter as shown in Fig. 

1. Progress in LiDAR instrumentation strongly depends on 

laser technology. However, early lasers used for remote 

atmospheric probing includes ruby, copper-vapor, nitrogen 

http://www.ftstjournal.com/
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and CO2 (Killinger and Menyuk, 1987). Since 80s, high-

power excimer and Nd:YAG lasers are widely utilized not 

only as LiDAR emitters but also to pump secondary laser 

sources. In LiDAR system, wavelength choice depends on 

application but usually the atmospheric transparent spectral 

region is considered as well as eye-safety and optical 

interaction of atmospheric constituents. Atmospheric aerosols 

and molecules scattering are more strong in the ultraviolet 

(UV) and visible wavelengths as compared with the infrared 

wavelength, however eye-safety is achieved most in the later 

(Cao et al., 2009). Several conventional LiDAR have been 

developed for aerosol profiling (Table 3).  However, these 

LiDARs mainly used high power pulsed Nd:YAG laser 

transmitter at fundamental wavelength of 1064 nm, with 

doubling (532 nm) and tripling (355 nm) capability using non-

linear crystals (Comerón et al., 2017). Even though the laser 

beams are well collimated, some LiDAR systems employed 

beam expander to further reduced the divergence of the beams 

and consequently allowing narrow receiver field of view 

(FOV) usage suppressing background light and multiple 

scattering detection (Wandinger, 2005). In addition, this will 

mitigate eye damage somewhat (Pal et al., 2005). The laser 

beam is transmitted into the atmosphere after beam expansion. 

However, the high-power pulsed lasers used in conventional 

elastic LiDARs are of high cost and sophisticated though 

covering large distances.  

Imaging LiDAR 

The inherent conventional high power pulsed lasers were 

maintained as transmitters in bistatic imaging LiDAR for 

atmospheric aerosols profiling (Meki et al., 1996; Barnes et 

al., 2007; Sharma et al., 2011). Meanwhile the advancement 

in laser technology make high power CW laser diodes widely 

available and relatively cheap in the recent years at different 

wavelengths ranging from 405 to 1550 nm (Brydegaard et al., 

2017). These lasers are utilized in monostatic imaging LiDAR 

systems as light sources for atmospheric aerosols and trace 

gases monitoring recently, e.g., at 407, 450, 520, 532 and 808 

nm (Mei and Brydegaard, 2015c, 2016; Kong et al., 2018, 

2020; Mei et al., 2018; Sun et al., 2018; Mei et al., 2019b) as 

evident in Table 3. The large divergence of laser diode beam 

can be reduced using cylindrical lens pair to improve 

geometrical transmission efficiency (Kong et al., 2018). 

 

 

Table 3: Different transmitter parameters specification for conventional and Imaging LiDAR systems; PRF = pulse 

repetition frequency 

Wavelength (nm) 

Pulse 

energy 

(mJ) 

PRF 

(kHz) 

Pulse  

Duration  

(ns) 

Beam divergence (mrad) 
Output  

power (W) 
Ref. 

532 500 0.03 5-7 0.5  Moorgawa et al. (2007) 

1574 150-200 0.01 9 <5  Cao et al. (2009) 

1064, 532 0.435 10    Marchant (2009) 

532 120 0.015  1.5  Althausen et al. (2009) 

1064 400 0.03 7 0.1  Liu et al. (2011) 

355 300 0.03 5 1  Behrendt et al. (2011) 

355 16 0.02 7   Lolli et al. (2011) 

1064, 532 150 0.01 6   Strawbridge (2013) 

532 100 0.02    Xie et al. (2015) 

532 200 0.2  0.5  Lihui et al. (2015) 

532 160 0.01  0.6  Meki et al. (1996) 

532 330 0.03 8 <1  Barnes etal. (2007) 

CW laser diode 808    380 ꓕ x 100 ǁ 3.2 Mei and Brydegaard (2015b) 

CW laser diode 450    450 ꓕ x 140 ǁ 3.5 Kong et al. (2018) 

CW laser diode 407    450 ꓕ x 130 ǁ 1 Mei et al. (2018) 

CW laser diode 520     1 Mei et al. (2019) 

CW laser diode 808     4 Liu et al. (2019) 

 

 

Table 4: Receiver parameters specification for conventional and Imaging LiDAR systems 
Telescope diameter 

(mm) 

Telescope focal  

length (mm) 
Detector Filter Resolution (pixels) Ref. 

445 2000 PMT   Moorgawa et al. (2007) 
361.9  APD, PIN   Cao et al. (2009) 

280  PMT, APD   Marchant (2009) 

200  PMT 523nm: 1nm FWHM  Althausen et al. (2009) 
450  PMT, APD 1064nm: 0.3nm FWHM  Liu et al. (2011) 

400 4000 PMT 355nm: 8nm FWHM  Behrendt et al. (2011) 

     Lolli et al. (2011) 
354 3910 PMT, APD   Strawbridge (2013) 

220  PMT 532nm: 0.3nm FWHM  Xie et al. (2015) 

230  PMT   Lihui et al. (2015) 
  CCD 532nm: 3nm FWHM 510x492 Meki et al. (1996) 

  CCD 532nm: 10nm FWHM 512x512 Barnes et al. (2007) 

200 800 CMOS 808nm: 3nm FWHM 2088x1088 Mei and Brydegaard (2015b) 

200 800 CMOS 450nm: 10nm FWHM 2048x1024 Kong et al. (2018) 

200 800 CMOS 407nm: 1.7nm FWHM 2048x1024 Mei et al. (2018) 

200 800 CMOS 520nm: 10nm FWHM 2048x1024 Mei et al. (2019a) 

150 750 CMOS  2048x1024 Liu et al. (2019) 
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Receiver conventional elastic LiDAR 

The receiver subsystem of an elastic LiDAR system may 

include receiver optics (usually telescope), the optical 

analyser, the fast photodetectors, and data acquisition 

electronics. Table 4 summarised the specifications of some 

parameters for the components (both conventional elastic 

LiDAR and imaging LiDAR). The laser beam backscattered 

by the atmospheric constituents (aerosols and molecules) are 

collected and focused to a smaller spot with the telescope. The 

reflective (mirror) telescope is preferred over refractive (lens) 

one mostly of primary diameter of 0.1 to few meters 

depending on whether higher atmosphere or lower atmosphere 

is to be probed (Wandinger, 2005).  

In conventional elastic LiDAR, optical analysis of the 

backscattered signal is usually performed prior to detection. 

This is simply done using interference filter to suppress light 

outside transmission band such as background light from 

reaching the detector to avoid saturation and higher noise 

levels. A depolarisation sensitive elastic system has additional 

spectral analysis carry out by polarization analysers. The 

filtered backscattered light is detected (converted to electrical 

signal) commonly using PMT (particularly at ultraviolet and 

visible wavelengths for its superior signal-to-noise ratio) or 

APD (at infrared wavelength for its sensitivity) (Agishev et 

al., 2006). However, the signal detection can be based on 

photon counting mode when backscattered signal is weak for 

far distance or analog detection mode for strong backscattered 

signal from short distance. The average current from the PMT 

in analog detection mode is converted to digital form using 

fast analog-to-digital converter (ADC) for further processing 

and storage.  

Imaging LiDAR 

The receiver and/or detector components in an imaging 

LiDAR system are mainly telescope and an imaging sensor. 

This imaging sensor used as detectors can be CCD or CMOS 

camera sensor. The telescope focused the entire illuminating 

volume onto an area imaging sensor, thus overcoming the 

overlap and dynamic range problems as well as necessity for 

scanning of conventional elastic LiDAR system (Barnes et al., 

2007). An interference filter is usually employed to supress 

the sunlight background radiation. Meanwhile the expensive 

detectors and data acquisition electronics of conventional 

elastic LiDAR is avoided by utilizing the CMOS/CCD camera 

sensor for the purpose, thus making imaging LiDAR 

relatively inexpensive (Kong et al., 2018). 

 

Conclusions 

The atmospheric LiDARs are proved to be strong tools for 

range-resolved atmospheric remote sensing. Advances in laser 

and LiDAR technology aided the improvement particularly in 

aerosol LiDARs. Conventional elastic aerosol LiDARs have 

attained a greater level of maturity but imaging aerosol 

LiDARs are still at development stage propelled by the strong 

interest in providing wider aerosol properties coverage at 

affordable cost. Thus, ground-based coordinated LiDAR 

networks and spaceborne orbiting LiDARs together will 

provides a good understanding of the role of aerosols 

and/clouds in the global radiative balance and contribute to 

air-quality forecasts and meteorological analyses. 
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